# (12) United States Patent # LeBlanc et al. # US 9,348,097 B2 (10) **Patent No.:** (45) **Date of Patent:** May 24, 2016 # (54) ARCHITECTURE FOR A FIBER OPTIC **NETWORK** (71) Applicant: ADC Telecommunications, Inc., Berwyn, PA (US) Inventors: Thomas G. LeBlanc, Westminster, MA (US); Bryan Kennedy, Norcross, GA (US); Erik J. Gronvall, Bloomington, MN (US); Douglas C. Ellens, Buffalo, MN (US) Assignee: CommScope Technologies LLC, Hickory, NC (US) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Appl. No.: 14/574,672 Filed: Dec. 18, 2014 (22) (65)**Prior Publication Data** > US 2015/0219864 A1 Aug. 6, 2015 # Related U.S. Application Data - (63) Continuation of application No. 13/196,623, filed on Aug. 2, 2011, now Pat. No. 8,961,035. - (60) Provisional application No. 61/370,073, filed on Aug. 2, 2010. | (51) | Int. Cl. | | |------|-----------|-----------| | | G02B 6/36 | (2006.01) | | | G02B 6/00 | (2006.01) | | | G02B 6/44 | (2006.01) | | | G02B 6/38 | (2006.01) | (52) U.S. Cl. CPC ...... G02B 6/3887 (2013.01); G02B 6/3807 (2013.01); G02B 6/3885 (2013.01); G02B 6/443 (2013.01); G02B 6/4429 (2013.01); G02B 6/4471 (2013.01); Y10T 29/49826 (2015.01) # Field of Classification Search CPC .... G02B 6/403; G02B 6/3807; G02B 6/3849; G02B 6/3885; G02B 6/3887; G02B 6/3897; G02B 6/4271; G02B 6/443; G02B 6/4429; G02B 6/4439; G02B 6/4452; Y10T 29/49829 USPC .......... 385/24, 53-54, 76-78, 100, 102, 106, 385/109, 113, 134–135, 139 See application file for complete search history. #### (56)**References Cited** # U.S. PATENT DOCUMENTS | 7,088,893 | B2 | 8/2006 | Cooke et al. | |-----------|----|---------|-----------------------| | 7,120,347 | B2 | 10/2006 | Blackwell, Jr. et al. | | 7,266,274 | B2 | 9/2007 | Elkins, II et al. | | 7,277,614 | B2 | 10/2007 | Cody et al. | | 7,346,243 | B2 | 3/2008 | Cody et al. | | 7,349,605 | | 3/2008 | Noonan et al. | | 7,489,849 | B2 | 2/2009 | Reagan et al. | | 7,519,258 | B2 | 4/2009 | Wilken et al. | | 7,555,181 | B2 | 6/2009 | Temple, Jr. et al. | | 7,565,055 | B2 | 7/2009 | Lu et al. | | | | 100 | . 45 | (Continued) Primary Examiner — Akm Enayet Ullah Assistant Examiner — Michael Mooney (74) Attorney, Agent, or Firm — Merchant & Gould P.C. #### (57)**ABSTRACT** The present disclosure relates to a fiber optic network architecture that uses outside plant fan-out devices to distribute optical signals between fiber distribution hubs and multiservice terminals. The network architecture can also include collector boxes positioned at selected locations of the network architecture. Additionally, patching systems can be used in facilitating upgrading the capacity of the fiber optic network. # 17 Claims, 20 Drawing Sheets # US 9,348,097 B2 Page 2 | (56) | References Cited | 8,068,712 B2 | 11/2011 | Wilken et al.<br>Reagan et al. | |--------------|--------------------------|------------------------------|---------|---------------------------------| | U.S. 1 | PATENT DOCUMENTS | 8,498,511 B2<br>8,961,035 B2 | 2/2015 | Reagan et al.<br>LeBlanc et al. | | 7,623,749 B2 | 11/2009 Reagan et al. | 2007/0189691 A1 | | Barth et al. | | | 12/2009 Reagan et al. | 2008/0152292 A1* | 6/2008 | Wilken G02B 6/4452 | | 7,680,388 B2 | 3/2010 Reagan et al. | | | 385/135 | | 7,693,374 B2 | 4/2010 Cody et al. | 2008/0193091 A1 | 8/2008 | Herbst | | 7,729,583 B2 | 6/2010 Elkins, II et al. | 2008/0310798 A1 | 12/2008 | Cody et al. | | 7,729,584 B2 | 6/2010 Cody et al. | 2010/0092133 A1 | 4/2010 | Conner | | 7,805,044 B2 | 9/2010 Reagan et al. | 2010/0284662 A1 | 11/2010 | Reagan et al. | | 7,941,027 B2 | 5/2011 Mertesdorf et al. | | | Reagan et al. | | 8,041,166 B2 | 10/2011 Kachmar | | | | | 8,041,178 B2 | 10/2011 Lu et al. | * cited by examiner | | | FIG. 3 FIG. 7 FIG. 10 FIG. 11 FIG. 32 (Prior Art) FIG. 33 May 24, 2016 FIG. 35 # ARCHITECTURE FOR A FIBER OPTIC NETWORK # CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation of application Ser. No. 13/196,623, filed Aug. 2, 2011, now issued as U.S. Pat. No. 8,961,035, which application claims the benefit of provisional application Ser. No. 61/370,073, filed Aug. 2, 2010, which applications are incorporated herein by reference in their entirety. ### BACKGROUND Passive optical networks are becoming prevalent in part because service providers want to deliver high bandwidth communication capabilities to customers. Passive optical networks are a desirable choice for delivering high-speed communication data because they may not employ active electronic devices, such as amplifiers and repeaters, between a central office and a subscriber termination. The absence of active electronic devices may decrease network complexity and/or cost and may increase network reliability. An example network can include a central office that connects a number of end subscribers (also called end users herein) in a network. For example, FIG. 1 is a schematic diagram of a network 10 including a central office 11 that connects a number of subscribers 15 in the network 10. The central office can additionally connect to one or more larger networks, such as the Internet (not shown) and a public switched telephone network (PSTN). Some cables in the network 10 can be branched out from main cable lines 12 and routed to fiber distribution and access terminals (e.g., fiber distribution hubs or pedestals). For 35 example, feeder cables can branch from main cable lines 12 at branch points and be routed to FDHs 13. Such branched cables might extend from the FDHs 13 to smaller fiber access terminals (e.g., optical network terminals or drop terminals) 14 directly adjacent the business or home to which service 40 may be provided. The various lines of the network can be aerial or housed within underground conduits. splitters used in FDHs 13 can accept feeder cables having a number of fibers and may split signals carried on those incoming fibers into, for example, 216 to 432 individual signals that may be associated with a like number of end user locations 15. In typical applications, an optical splitter is provided prepackaged in an optical splitter module housing and provided with splitter output pigtails that extend from the module. The splitter output pigtails are typically connectorized with, for example, SC, LC, or LX.5 connectors. The optical splitter components in the housing and thus provides for easy handling for otherwise fragile splitter components. This modular approach allows optical splitter modules to be added incrementally to fiber distribution and access terminals as required. be used with the a FIG. 19 is an end that can be used with the and FIG. 20 schema out device that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and FIG. 19 is an end that can be used with the and Improvements to current fiber networks are desirable. # SUMMARY Certain aspects of the disclosure relate to architectures for fiber optic networks that allow for rapid fiber deployment. Certain aspects of the disclosure relate to architectures for fiber optic networks that allow for efficient system upgrades. 65 A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate 2 to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based. ### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a prior art telecommunication network; FIG. 2 shows an example architecture for a fiber optic network in accordance with the principles of the present disclosure: FIG. 3 is a schematic view of an example fiber distribution 15 hub that can be used in the architecture of FIG. 2; FIG. 4 illustrates an example hardened multi-fiber optical plug that can be used in the architecture of FIG. 2; FIG. 5 illustrates a hardened multi-fiber optical jack that can be used in the architecture of FIG. 2; FIG. 6 illustrates a collector box that can be used in the architecture of FIG. 2; FIG. 7 is another view of the collector box of FIG. 6; FIG. 8 is a schematic view of an end of a twelve fiber version of a hardened multi-fiber optic connector used in the architecture of FIG. 2: FIG. **9** is a schematic view of a port of the collector box of FIGS. **6** and **7**; FIGS. 10 and 11 show an example four port multi-service terminal that can be used in the architecture of FIG. 2: FIG. 12 is an end view of a hardened multi-fiber connector used with the multi-service terminal of FIGS. 10 and 11; FIG. 13 illustrates an example port of the multi-service terminal of FIGS. 10 and 11; FIG. 14 illustrates a six port multi-service terminal that can be used in the architecture of FIG. 2; FIG. 15 is an end view of a multi-fiber optical connector of the multi-service terminal of FIG. 14; FIG. 16 shows an eight port multi-service terminal that can be used in the architecture of FIG. 2; FIG. 17 is an end view of a multi-fiber optical connector that can be used with the multi-service terminal of FIG. 16; FIG. 18 shows a twelve port multi-service terminal that can be used with the architecture of FIG. 2; FIG. 19 is an end view of a multi-fiber optical connector that can be used with the multi-service terminal of FIG. 18; FIG. 20 schematically shows a hardened outside plant fanout device that can be used with the architecture of FIG. 2: FIG. 21 is a cross-sectional view taken along section line 21-21 of FIG. 20; FIG. 22 is a cross-sectional view taken along section line 22-22 of FIG. 20; FIG. 23 is a cross-sectional view taken along section line 23-23 of FIG. 20; FIG. 24 is a cross-sectional view taken along section line FIG. 25 shows an alternative hardened outside plant fanout device that can be used in the architecture of FIG. 2; FIG. **26** is a cross-sectional view taken along section line **26-26** of FIG. **25**; FIG. 27 is a cross-sectional view taken along section line 27-27 of FIG. 25; FIG. 28 shows a further hardened outside plant fan-out device that can be used in the architecture of FIG. 2; FIG. 29 is s cross-sectional view taken along section line 29-29 of FIG. 28; FIG. 30 is a cross-sectional view taken along section line 30-30 of FIG. 28; FIG. 31 illustrates an example rapid outdoor patch cord assembly that can be used in the architecture of FIG. 2; FIG. 32 is a cross-sectional view taken along section line 32-32 of FIG. 31; FIG. 33 illustrates a patching system in accordance with 5 the principles of the present disclosure; FIG. 34 illustrates a capacity upgrade to the patching system of FIG. 33; and FIG. 35 illustrates a cable arrangement in accordance with the principles of the present disclosure. ### DETAILED DESCRIPTION Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. FIG. 2 shows example architecture 20 for a fiber optic network in accordance with the principles of the present 20 disclosure. The architecture 20 is used to distribute fiber optic service from a central office 22 to a plurality of subscriber/ user locations 24. In the depicted embodiment, various fiber optic cables are routed underground to a plurality of hand holes 26 located in general proximity to the various locations 25 of the subscriber locations 24. The architecture 20 can include a feeder cable 28 including one or more optical fibers routed from the central office 22 to a fiber distribution hub 30. The fiber distribution hub 30 can include one or more optical splitters for splitting signals input 30 from the feeder cable 28 and directing the split signals to a plurality of output cables 32. The output cables 32 can extend from the fiber distribution hub 30 into a hand hole 26A located beneath the fiber distribution hub 30. Each of the output cables 32 can be terminated with a hardened multi- 35 fiber fiber optic connector 68 (e.g., a 12 fiber connector) located within the hand hole 26A. The hardened multi-fiber fiber optic connectors 68 can be connected to corresponding hardened multi-fiber fiber optic connectors 68 terminating a multi-fiber distribution cable 36 to provide optical couplings 40 between the output cables 32 and the distribution cable 36. The distribution cable 36 is routed underground to a collector box 38 located at hand hole 26F. To reach hand hole 26F, the multi-fiber distribution cable 36 is routed through a series of intermediate hand holes 26B-26E and through a series of 45 underground conduits 40 (only some shown) that extend between the hand holes. The collector box 38 is preferably positioned at an intermediate one of the hand holes 26A-26K. From the collector box 38, a multi-fiber optic cable can be routed to a multi-service terminal 42 within the hand hole 26F. Additional cables can be routed in upstream and downstream directions from the hand hole 26F through the underground conduits 40 to multi-service terminals 42 positioned within hand holes 26B-26E and in hand holes 26G-26K. The multi-service terminals 42 provide connection locations for readily connecting fiber optic drop cables 46 to the remainder of the network. The drop cables 46 can extend from the multi service terminals 42 to network interface devices provided at the subscriber locations 24. Hardened outside plant fan-out devices **44** can be used to facilitate directing optical signals to two or more separate multi-service terminals **42** without needing to utilize a separate port on the collection box **38** for each of the multi-service terminals **42**. It will be appreciated that the distribution architecture 20 is configured to facilitate rapid deployment of the network in the 4 field. In this regard, rapid spooling technology can be incorporated into any of the various components (e.g., the fiber distribution hub 30, the collector boxes 38 and the multiservice terminals 42) of the distribution architecture 20. Moreover, rapid spooling technology can also be used in combination with patch cords routed between various components of the distribution architecture 20. Such rapid spooling technology allows fiber optic cables to be readily pulled through the underground conduits 40 from hand hole to hand hole. To facilitate rapid deployment of the network, many of the system components/connectors are preferably pre-terminated at the factory and thereby equipped with plug-and-play technology that can reduce or eliminate the need for optical splicing in the field. During deployment of the network, field technicians can use such plug-and-play technology to readily interconnect the various components of the architecture 20. Such plug-and-play technology also allows the architecture 20 to be readily upgraded after deployment with minimal or no need for field splicing. FIG. 3 is a schematic representation of the fiber distribution hub 30 of FIG. 2. As shown at FIG. 3, the fiber distribution hub includes an outer enclosure 50 (e.g., an environmentally sealed cabinet with one or more doors for accessing the interior of the cabinet) containing a splitter location 52 and a termination region 54. The splitter location 52 can include one or more splitter mounting positions for mounting optical splitter modules. The optical splitter modules can include optical splitters used to split input signals from the optical fibers of the feeder cable 28 to a plurality of connectorized pigtails **56**. It will be appreciated that the splitters can provide any number of different split ratios (e.g., one to eight split ratio, one to sixteen split ratio, one to thirty two split ratio, etc.). The connectorized pigtails 56 include optical connectors 58 (e.g., SC connectors) that plug into fiber optic adapters **60** (e.g., SC fiber optic adapters) provided at the termination region 54. The fiber optic adapters 60 assist in coupling the optical connectors 58 to corresponding optical connectors 62 (e.g., SC connectors) terminating the ends of output pigtails 64. The output pigtails 64 are routed to the output cables 32 that extend out of the enclosure 50 into the hand hole 26A. Outer ends of the output cables 32 are terminated with the hardened multi-fiber optical connectors 68. It will be appreciated that fiber distribution hubs of various sizes and fiber counts can be utilized. In one embodiment, fiber distribution hub 30 provides at least 288 terminations corresponding to 288 output fibers routed through the output cables 32. For ease of administration, the fibers can be organized in groups of fibers corresponding to the number of fibers terminated at each of the hardened multi-fiber optical connectors 68. For example, if the hardened multi-fiber optical connectors **68** each support 12 fibers, then the fiber optic adapters 60 at the termination region 54 can be arranged in sets of 12 with each set of 12 corresponding to a given one of the hardened multi-fiber optical connectors 68. In the case of a 288 fiber distribution hub, 24 sets of 12 fiber optic adapters can be provided at the termination region 54, and 24 twelve fiber output cables 32 each having a twelve fiber hardened multi-fiber optical connector 68 can be routed out of the enclosure 50. The hardened multi-fiber optical connectors **68** are preferably adapted for outside environmental use. In this regard, hardened multi-fiber optical connectors **68** can include one or more environmental seals for preventing moisture intrusion into the connector **68**. Additionally, the hardened multi-fiber optical connectors **68** can include robust fasteners (e.g., threaded fasteners) capable of withstanding relatively large tensile loads. Further details relating to the fiber distribution hub **30** can be found at U.S. Provisional Patent Application Ser. No. 61/310,214 that is hereby incorporated by reference in its entirety. In certain embodiments, hardened multi-fiber optical con- 5 nectors 68 can be either hardened multi-fiber jacks or hardened multi-fiber plugs. FIG. 4 shows an example of hardened multi-fiber optical plug 70 and FIG. 5 shows a corresponding hardened multi-fiber optical jack 72. The plug 70 and the jack 72 are adapted to be mechanically and optically coupled 10 together. The hardened multi-fiber optical plug 70 includes a housing assembly 74A supporting a multi-fiber ferrule 76A supporting the ends of a plurality of optical fibers 78A (e.g., 12 fibers). An externally threaded coupling nut 80A is mounted on the housing assembly 74A. The hardened multi- 15 fiber optical jack 72 includes a housing assembly 74B. A multi-fiber ferrule 76B is supported within the housing assembly 74B. The multi-fiber ferrule 76B supports a plurality of optical fibers 78B. An internally threaded coupling nut **80**B is mounted on the housing assembly **74**B. When the 20 hardened multi-fiber optic plug 70 and the hardened multifiber optic jack 72 are connected together, the housing assembly 74A mates with the housing assembly 74B, and the multifiber ferrule 76A connects with the multi-fiber ferrule 76B such that the optical fibers 78A, 78B are aligned with one 25 another and optically connected to one another. The coupling nuts 80A, 80B are threaded together to provide a secure mechanical connection between the optical plug 70 and the optical jack 72. One or more environmental seals can be provided between 30 the housing assemblies **74A**, **74B** to prevent water intrusion into the optical plug **70** and the optical jack **72** when the components are coupled together. Further details about the hardened multi-fiber optical plug **70** and the hardened multi-fiber optical jack **72** can be found in U.S. Pat. No. 7,264,402 35 to Theuerkorn et al., the disclosure of which is hereby incorporated by reference herein in its entirety. FIG. 6 schematically illustrates the collector box 38 of the distribution architecture 20. The collector box 30 includes a housing 100 that is preferably environmentally sealed. A 40 plurality of ports 102 are provided on the housing 100. The ports 102 are preferably configured to provide optical connections with hardened multi-fiber optical connectors 68 (e.g., hardened multi-fiber optic plug 70 or hardened multifiber optic jack 72). In certain embodiments, the ports 102 can 45 comprise hardened multi-fiber optical jacks 72 configured to receive hardened multi-fiber optical plugs 70. In alternative embodiments, the ports 102 can include converters having exterior ends adapted to receive a hardened multi-fiber optical plug or hardened multi-fiber optical jack, and interior ends 50 adapted to receive standard non-hardened multi-fiber optical connectors (e.g., MPO/MTP connectors). An example nonhardened multi-fiber optical connector is disclosed at U.S. Pat. No. 5,214,730 to Nagasawa et al., that is hereby incorporated by reference herein in its entirety. An example con- 55 verter that can be used at the ports 102 is disclosed at U.S. Patent Application Publication No. US2008/0226235 A1, that is hereby incorporated by reference herein in its entirety. The ports 102 provide connection locations whereby multi-fiber optical connectors located within the housing 100 60 can be optically connected to multi-fiber optical connectors located outside of the housing 100. When interface converters are used at the ports 102, the multi-fiber optical connectors located within the housing 100 can be non-hardened (e.g., standard MPO connectors) and the multi-fiber optical connectors received within the ports 102 from outside the housing 100 can be hardened (e.g., hardened multi-fiber optical 6 plugs 70 or hardened multi-fiber optical jacks 72). In other embodiments, hardened multi-fiber optical plugs 70 or hardened multi-fiber optical jacks 72 can be mounted directly to the housing 100 at the ports 102 thereby providing connection locations whereby corresponding hardened multi-fiber optical plugs/hardened multi-fiber optical jacks can interface with the housing 100. Referring to FIGS. 6 and 7, a spool 104 can be mounted to the housing 100. Multi-fiber optic cable 36 can be coiled about the spool 104. In one embodiment, the multi-fiber optic cable 36 includes 144 fibers and the housing 100 includes 12 ports with 12 of the optical fibers being routed to each of the 12 ports. In other embodiments, more or fewer ports can be provided. For example, in another embodiment, a 72 fiber optical cable can be utilized and the housing 100 can include 6 active ports each accommodating 12 of the optical fibers of the fiber optic cable. The multi-fiber optical cable 36 has a first end 37 that is routed from the spool 104 into the interior of the housing 100. Within the housing 100, the optical fibers of the fiber optic cable 36 are fanned out and directed in groups to each of the ports 102. The fibers within the housing 100 can be terminated with a standard MTP connector if interface converters are utilized at the ports 102. Alternatively, the fibers within the housing 100 can be terminated with hardened multi-fiber optical plugs or hardened multi-fiber optical jacks provided at the ports 102. The multi-fiber optic cable 36 can also include a second end 39 at which a plurality of hardened multi-fiber optical connectors 68 are terminated. In certain embodiments, the number of hardened multi-fiber optical connectors 68 provided at the second end of the multi-fiber optic cable 36 equals the active number of ports provided at the housing 100(e.g., Y connectors 68 and Y corresponding active ports are provided). For example, in the case of a 144 fiber cable 36, twelve ports each accommodating 12 fibers are provided at the housing 100 and twelve hardened multi-fiber optical connectors 68 each supporting 12 optical fibers are provided at the second end 39 of the cable. The cable 36 includes a main body portion 41 and a plurality of broken-out portions 43 (i.e., fanned out portions or divided portions) to which the connectors 68 are terminated. A break-out/fan-out block 45 is provided at the interface between the main body portion 41 and the broken-out portions 43. Tensile strength members within jackets of the broken out portions 43 can be secured to the connectors 68 and the break-out block 45. Tensile strength members of the main body portion 41 can be secured to the block 45 and the housing 100. The hardened multi-fiber optical connectors 68 of the cable 36 are adapted to optically connect with the hardened multi-fiber optical connectors terminating the output cables 32 of the fiber distribution hub 30. In certain embodiments, the hardened multi-fiber optic connectors 68 provided at the second end of the multi-fiber optical cable 36 can be hardened multi-fiber optic plugs 70 or hardened multi-fiber optic jacks 72. FIG. 8 is a schematic view of an end of a twelve fiber version of one of the hardened multi-fiber optic connectors provided at the second end of the multi-fiber fiber optic cable 36. FIG. 9 is a schematic view of one of the ports 102 of the connector housing 100. The port 102 is shown providing connection locations for twelve fibers. In use of the collector box 38, the collector box 38 can initially be placed in the desired hand hole (e.g., hand hole 26F). Once in the hand hole, the collector box 38 can be mounted on a spindle 106 within the hand hole. Thereafter, the multi-fiber optical cable 36 can be pulled from the hand hole 26F through the underground conduits 40 to the hand hole 26A where the hardened multi-fiber optic connectors 68 of the cable 36 are coupled to the hardened multi-fiber optical connectors 68 of the output cables 32 extending from the fiber distribution hub 30. To route the multi-fiber fiber optic cable 36 through the conduit 40, the second end 39 of the cable 36 can be connected to a pulling line used to pull the cable through the conduits 40. The hardened multi-fiber optical connectors 68 of the cable 36 can be arranged in a staggered configuration to facilitate passing the connectors through the conduit. For example, as shown at FIGS. 6 and 7, the breakout cable portions extending from the break-out block 45 have different lengths thereby allowing for staggering of the hardened multi-fiber optical connectors 68. When the second end of the multi-fiber fiber optic cable 36 is pulled through the conduit 40, the spool 104 and the housing 100 with the ports 102 spin in unison about the spindle 106 thereby allowing the multi-fiber fiber optic cable 36 to be paid off from the spool 104. The multi-service terminals 42 provide connection locations for connecting subscribers to the distribution architecture 20. Typically, drop cables 46 having single optical fibers are routed between the multi-service terminals 42 and the subscriber locations 24. The multi-service terminals 42 include housing 202 that are preferably environmentally sealed. The housings 202 include ports 204 at which the drop 25 cables 46 can be connected to the distribution architecture 20. In certain embodiments, spools 206 can be mounted to the housings 202. It will be appreciated that multi-service terminals can be provided with different number of active ports. For example, 4-port, 6-port, 8-port and 12-port multi-service 30 terminals can be used. FIGS. 10 and 11 show an example four port multi-service terminal 42a. The terminal 42a includes a housing 202 that is preferably environmentally sealed. A plurality of ports 204 configured to interface with single-fiber fiber optic connec- 35 tors are provided on the housing 202. A spool 206 is also connected to the housing 202. A multi-fiber optical cable 208 is coiled about the spool 206. A first end 207 of the multi-fiber optical cable 208 extends from the spool 206 into the interior of the housing 202. Within the interior of the housing 202, the 40 optical fibers of the multi-fiber optical cable 208 are fanned out and routed to the ports 204. In the depicted embodiment, single fibers are routed to each of the ports 204. The ports 204 can include interior ends adapted for receiving non-hardened fiber optic connectors (e.g., SC connectors). The non-hard- 45 ened fiber optic connectors can be positioned within the housing 202 and can include ferrules supporting the ends of the fanned-out optical fibers within the housing 202. Outer ends of the ports 204 (see FIG. 13) can be configured to receive hardened single fiber optical connectors 210 corresponding to 50 the drop cables 46. Examples of hardened single fiber optical connectors are disclosed at U.S. Pat. Nos. 6,648,520; 7,090, 407; and 7,744,288 which are hereby incorporated by reference herein in their entireties. A second end **212** of the multi-fiber optic cable **208** is 55 terminated by a hardened multi-fiber optical connector **68** (e.g., a hardened multi-fiber optical plug **70** or a hardened multi-fiber optical jack **72**). FIG. **12** shows an end view of the hardened multi-fiber optical connector **68**. The hardened multi-fiber optical connector **68** includes a ferrule **214** defining twelve fiber positions (e.g., holes for receiving and supporting fibers therein). The fiber positions are numbered consecutively one through twelve. In the case of a 4-port multi-service terminal, positions 1-4 of the ferrule **214** will receive and support active fibers routed to corresponding ports 1-4 of 65 the multi-service terminal. In the case of a six port multi-service terminal **42***b* (see FIGS. **14** and **15**), positions 1-6 of 8 the ferrule **214** will receive active fibers corresponding to the ports 1-6 of the terminal. In the case of an eight port terminal **42**c (see FIGS. **16** and **17**), positions 1-8 of the ferrule **214** will receive fibers corresponding to ports 1-8 of the terminal. In the case of a twelve port terminal **42**d (see FIGS. **18** and **19**), all twelve positions of the ferrule **214** will receive active fibers corresponding to the twelve ports of the terminal. To deploy a multi-service terminal within the distribution architecture 20, the terminal is positioned within the hand hole in which it is desired to locate the terminal. The second end 212 of the cable 208 is then pulled through the conduit 40 to a desired connection location where the hardened multifiber optical connector 68 can be connected to the distribution architecture 20. A spindle structure can be utilized to allow the spool 200, the housing 202 and the ports 204 to spin in unison about a common axis as the multi-fiber fiber optic cable 208 is paid off from the spool 206. The second end 212 of the multi-fiber optical cable 208 can be pulled back all the way to the collector box 38, or it can be pulled to an intermediate location between the multi-service terminal location and the collector box 38. If the second end 208 of the cable 208 is pulled all the way back to the collector box 38, the hardened multi-fiber fiber optic connector 68 can be plugged into a port 102 of the collector box 38 to provide optical connections therewith. After a sufficient length of the cable 208 has been paid off from the spool 206, the hardened single fiber connectors of the drop cables 46 can be plugged into the ports 204 of the multi-service terminal. In this way, the subscriber locations are connected to the overall network. In certain embodiments, the hardened outside plant fan-out devices 44 can be installed at locations between the multiservice terminals 42 and the collector boxes 38 of the distribution architecture 20. FIG. 20 shows a hardened outside plant fan-out device 44A having a 3-way fan-out configuration. The fan-out device 44A includes a 12-fiber cable 300 terminated at one end by a hardened multi-fiber optic connector 68. As shown at FIG. 23, the hardened multi-fiber optical connector 68 includes a ferrule 302 supporting all twelve fibers of the cable 300. The device 44A also includes a fan-out block 304 in which the 12 fibers of the cable 300 are fanned out into three groups of four fibers that form fanned-out cable portions 306. As shown at FIGS. 21 and 22, both the main cable 300 and the fanned-out cable portions 306 can include tensile reinforcing structures 305 and outer jackets 307. The tensile reinforcing structures can be anchored to the fan-out block 304 and to the connectors 68. The fanned-out cable portions 306 are terminated by multi-fiber fiber optic connectors 68. As shown at FIG. 24, the fibers of the fanned out portions occupy positions 1-4 of the ferrules 302 of the multifiber fiber optic connectors 68. Positions 5-12 of the hardened multi-fiber fiber optic connectors are not utilized for active fibers. It will be appreciated that the fan-out device 44A is adapted for distributing signals from the collector box 38 to three separate 4-port multi-service terminals. FIG. 25 shows an alternative hardened outside plant fanout device 44B having the same configuration as the fan-out device 44A except the 12 fibers are fanned out into two fanned-out cable portions each including six of the fibers (see FIG. 26). The fanned-out cable portions are terminated by hardened multi-fiber fiber optic connectors 68. As shown at FIG. 27, the fibers occupy positions 1-6 of the ferrule of the hardened multi-fiber fiber optic connectors 68. The fan-out device 44B is adapted for distributing signals from the collector box 38 to two separate 6-port multi-service terminals. FIG. 28 shows a further hardened outside plant fan-out device 44C in accordance with the principles of the present disclosure. The fan-out device 44C has the same construction as the fan-out device **44**B except the fibers are not fanned out uniformly between the two fanned out cable portions. Instead, one of the fanned cable portions includes 8 fibers (see FIG. **29**) while the other includes 4 fibers (similar to FIG. **22**). The fanned out cable portion with 4 fibers is terminated by hardened multi-fiber fiber optic connector **68** and the fibers occupy positions 1-4 (as shown at FIG. **24**) of the connector **68**. This hardened multi-fiber fiber optic connector is adapted to interface with a 4-port multi-service terminal. The other fanned out cable portion is terminated by hardened multi-fiber optical connector **68** and the 8 fibers of the fanned out cable portion occupy positions 1-8 of the ferrule of the connector (see FIG. **30**). This connector is adapted to interface with an 8-port multi-service terminal. In certain embodiments, hardened outdoor patch cords can 15 be used within the distribution architecture to facilitate making upgrades. For example, in certain embodiments, rapid patch cords can be used in place of the spools on the multiservice terminals. In such embodiments, the multi-fiber optical cables 208 exiting the multi-service terminals constitute 20 relatively short tethers that are connectorized by a hardened multi-fiber fiber optic connector 68. Due to the short length of the tether, it need not be coiled around a spool. A rapid patch cord can be used to provide an optical connection between the tether and another structure. For example, the rapid patch 25 cord can be used to connect the tether directly to the collection box 38 or it can be used to connect the tether to an intermediate hardened outside plant fan-out device 44 positioned between the collection box 38 and the multi-service terminal. Additionally, rapid outside patch cables can also be used to 30 provide connections between the collection box 38 and one of the hardened outside plant fan-out devices 44. FIGS. 31 and 32 show an example rapid outdoor patch cord assembly including a multi-fiber cable 400 (e.g., a 12-fiber multi-fiber cable) coiled around a spool 402. Hardened multi-fiber fiber optic connectors 68 are mounted at opposite ends of the cable 400. In a preferred embodiment, each of the hardened multi-fiber fiber optic connectors 68 includes a ferrule having 12 positions in which end portions of the optical fibers of the cable 400 are secured. In certain embodiments, the 40 cable 400 as well as the cables used to for the main body and fanned-out portions of the outside plant fan-out device can have a construction of the type described in U.S. patent application Ser. No. 12/607,748 which is hereby incorporated by reference herein in its entirety. The hardened multi-fiber fiber optic connector **68** positioned at a first end **407** of the cable **400** can be secured to a flange of the spool **402**. The cable **400** is spooled around a drum **406** of the spool. A slot **408** in the flange of the spool allows the first end of the cable to be routed to an outside of 50 the flange where the connector **68** is secured. A second end **409** of the cable **400** is located at the outside diameter defined by the cable wrapped about the spool. To deploy the patch cable 400, the spool 400 is mounted adjacent to a desired connection location (e.g., in a hand hole adjacent to n multi-service terminal, a collector box or a hardened outside plant fan-out device). The spool 402 can be mounted on a spindle or another structure for allowing the spool to spin. Thereafter, the second end 409 of the cable 400 is pulled causing the spool 402 to spin and cable to be paid off from the spool 402. The second end 409 is pulled through the underground conduits 40 and any intermediate hand holes to a second desired mounting location. Once sufficient cable length has been paid off from the spool 402 to allow for the desired connection, any remaining cable on the spool can be 65 cable tied and removed from the spool 402 thereby allowing the spool itself to be disposed of. The connectorized ends of 10 the patch cable can then be plugged into the desired connection locations to provide an optical patch there between. Further details about an example outdoor spool that can be used in accordance with the principles of the present disclosure are disclosed at application Ser. No. 61/370,070 that is hereby incorporated by reference herein in its entirety. The use of patch cords can assist in providing upgrades without requiring splicing. For example, FIG. 33 shows a system in which a twelve-fiber patch cord is routed through an underground conduit from collector box 38 to a 4-port multiservice terminal 42A. The patch cord has twelve fibers and hardened multi-fiber fiber optic connectors 68 supporting the twelve fibers at each end of the cable. One of the hardened multi-fiber optical connectors is plugged into one of the ports 102 of the collector box 38 while the other hardened multifiber fiber optic connector 68 of the patch cable is plugged into a corresponding hardened multi-fiber optical connector 68 mounted at the end of a short tether 67 of the multi-service terminal 44A. In this configuration, fibers 1-4 at a termination region of the fiber distribution hub 30 correspond to positions 1-4 of the various hardened multi-fiber optical connectors 68 used on the output cable 32 from the fiber distribution hub, the distribution cable 36 routed to the collector box 38, and the connectors 68 provided at the ends of the patch cord. Positions 1-4 of the ferrules on the termination panel correspond to ports 1-4 of the four port multi-service terminal 444A. Fibers 5-12 are currently unused and are available for ready upgrade in the event it is necessary to increase service capacity in region adjacent the multi-service terminal 44A. To upgrade service, the tether 67 of the terminal 42A can be disconnected from the patch cord by disconnecting the mated hardened multi-fiber fiber optic connectors 68. Thereafter, a larger capacity multi-service terminal (e.g., a twelve-port terminal) can be plugged into the patch cord to provide increased capacity. Once plugged in, ports 1-4 (see FIG. 34) of the twelve-port terminal still correspond to the same four subscribers. Thus, positions 1-4 at the termination panel still correspond to the same subscribers. However, fibers 5-12 are now active and are available for additional subscribers. FIG. 35 shows a cable arrangement 500 that can be used to replace the collector box 38. Cable arrangement 500 is depicted as including a 144-fiber patch cable, although other numbers of fibers could be used as well (e.g., 74 fibers, 288 fibers, etc.). The fibers within the cable are grouped into twelve groups of twelve. Each group of fibers is terminated by a multi-fiber fiber optic connector 68 at a first end 501 of the cable. Similarly, each of the groups of twelve fibers are terminated by a separate multi-fiber optical connector 65 at a second end 503 cable. The cable has cable break out regions adjacent each of the ends. At the cable break out regions, individual broken out cable portions 507 are broken out from a main region 509 of the cable. Each of the individual broken out cable portions 507 are terminated with a separate hardened multi-fiber fiber optic connector 65. In certain embodiments, the broken out cable portions 507 on one end of the cable have different lengths such that the multi-fiber optic connectors 68 are staggered relative to one another to facilitate pulling the connectors **68** through underground conduit. In still other embodiments, the multi-fiber fiber optic connectors 68 are staggered relative to one another at both ends of the The invention claimed is: - 1. An outside plant cable device comprising: - a cable arrangement having a first end and a second end, the cable arrangement including a jacket surrounding a plurality of optical fibers; - at least one hardened multi-fiber connector mounted at the first end of the cable arrangement to terminate at least some of the optical fibers of the cable arrangement; - a plurality of hardened multi-fiber connectors mounted at the second end of the cable arrangement, each of the hardened multi-fiber connectors terminating at least some of the optical fibers of the cable arrangement, wherein the second end of the cable arrangement includes more hardened multi-fiber connectors than the first end, wherein a first of the plurality of hardened multi-fiber connectors terminates fewer optical fibers than the at least one hardened multi-fiber connector mounted at the first end of the cable arrangement. - 2. The outside plant cable device of claim 1, wherein a second of the plurality of hardened multi-fiber connectors 15 terminates fewer optical fibers than the at least one hardened multi-fiber connector mounted at the first end of the cable arrangement. - 3. The outside plant cable device of claim 2, wherein the second hardened multi-fiber connector terminates fewer optical fibers than the first hardened multi-fiber connector. - **4**. The outside plant cable device of claim **2**, wherein the second hardened multi-fiber connector terminates a common number of optical fibers as the first hardened multi-fiber connector. - 5. The outside plant cable device of claim 2, wherein a third of the plurality of hardened multi-fiber connectors terminates fewer optical fibers than the at least one hardened multi-fiber connector mounted at the first end of the cable arrangement. - **6**. The outside plant cable device of claim **1**, wherein the 30 plurality of optical fibers of the cable arrangement includes twelve optical fibers. - 7. The outside plant cable device of claim 1, wherein the at least one hardened multi-fiber connector is the only connector at the first end of the cable arrangement. - **8**. The outside plant cable device of claim **1**, wherein the cable arrangement includes a fan-out structure. - 9. The outside plant cable device of claim 8, wherein the cable arrangement includes a first cable portion extending between the at least one hardened multi-fiber connector and 12 the fan-out arrangement and a second cable portion extending between the fan-out arrangement and the first hardened multifiber connector, wherein the first and second cable portions have different lengths. - 10. The outside plant cable device of claim 8, wherein the first and second cable portions each include a tensile reinforcing member and a jacket. - 11. The outside plant cable device of claim 10, wherein one of the tensile reinforcing members is anchored to the fan-out structure and the at least one hardened multi-fiber connector and another of the tensile reinforcing members is anchored to the fan-out structure and the first hardened multi-fiber connector. - 12. The outside plant cable device of claim 8, wherein a second of the plurality of hardened multi-fiber connectors terminates fewer optical fibers than the at least one hardened multi-fiber connector mounted at the first end of the cable arrangement. - 13. The outside plant cable device of claim 12, wherein the second hardened multi-fiber connector terminates fewer optical fibers than the first hardened multi-fiber connector. - 14. The outside plant cable device of claim 12, wherein the second hardened multi-fiber connector terminates a common number of optical fibers as the first hardened multi-fiber connector. - 15. The outside plant cable device of claim 12, wherein a third of the plurality of hardened multi-fiber connectors terminates fewer optical fibers than the at least one hardened multi-fiber connector mounted at the first end of the cable arrangement. - **16**. The outside plant cable device of claim **8**, wherein the plurality of optical fibers of the cable arrangement includes twelve optical fibers. - 17. The outside plant cable device of claim 8, wherein the at least one hardened multi-fiber connector is the only connector at the first end of the cable arrangement. \* \* \* \* \*